

Р	-		A4VS	0			1			-					
Prun Hydraulic		Hydraulic fluid	Axial piston unit	Type of operation	Size	Mode of operation		Series	Direction of rotation		Seals	Shaft end	Mounting flange	Service ports	Through drive

* Model Description

Prun Hydraulic								Р					
lydraulic fluid													
Mineral oils													
HF; HFB and HFC-Mediums													
Axial piston unit													
Variable displacement pump, industrial uses													
Pump, open circuits	ype of operation Pump, open circuits												
Size	40	71	105	10.0	050	255	500						
Displacement Vg max(ml/r)	40	71	125	180	250	355	500						
Mode of operation													
Pressure control DR	\sim	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	DR					
Power control with Hyperbolic open, curve	\checkmark						\checkmark	LR					
Manual control MA	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	MA					
Electronic control EO	\checkmark		\sim			\checkmark	\checkmark	EO					
Hydraulic control, pilot pressure dependent HD		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	HD					

PA4VSO

Axial piston variable pump

Used for hydraulic drives in open loop circuits

Features:

- Swashplate axial piston pump.
- Adjust the angle of swashplate to realize the stepless variable.
- Good suction characteristic.
- Have the structural design of compact, light weight, low noise characteristics.
- The sensitivity of control system.
- Flow is proportional to the drivek speed and to the displacement.
- Nominal pressure reach to 35 Mpa.
- Long service life, high-precision bearings.
- Hydrostatic balance slipper, improve the life of pump.
- With swashplate angle indicator.

PA4VSO

~	•
Se	ries
~~	1105

Series							
	\sim		-	_	—	 -	10
	_	_	\checkmark	\checkmark	\checkmark	 \checkmark	22
	_		\sim		\checkmark	 	30

Direction of rotation

	Clockwise	R
With view on shaft end	Counterclockwise	L

Seals

NBR Nitrile rubber	Р
FKM Fluoro-rubber	V

Shaft end

Keyed parallel shaft	Р
Splined shaft	Z

Mounting flange	40	71	125	180	250	355	500	
ISO 4 hole	\checkmark		\checkmark	\checkmark	\checkmark		—	В

Service ports

Port B and port S 90 degree offset; auxiliary pressure port B1 Metric fixing screws		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	13
Port B and port S 90 degree offset; preesure connection B1 connected by flange	\checkmark	25						

Through drive

Without auxiliary pump, without through drive	\checkmark	N00						
5								

* Technical Data

Performance parameters(these figures did not consider the efficiency of mechanical and volumetric efficiency)

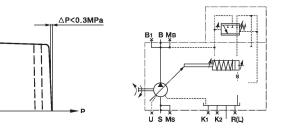
Size			40	71	125	180	250	355	500
Displacement (V	g max)	cm³/r	40	71	125	180	250	355	500
Max.speed (n _{max})		rpm	2600	2200	1800	1800	1500	1500	1320
Max.Output	if $n = n_{max}$	L/min	104	156	225	324	375	532	600
flow	if n=1500rpm	L/min	60	107	186	270	375	532	-
Max.power	if $n = n_{max}$	KW	61	91	131	189	219	310	385
	if n=1500rpm	KW	35	62	109	158	219	310	-
Max.torque	(∆P=35MPa)	N.m	223	395	696	1002	1391	1976	2783
Torque	(∆P=10MPa)	N.m	64	113	199	286	398	564	795
Weight(approxir	nately)	kg	40	54	87	103	186	206	318

Parameter calculation

Flow
$$q_v = \frac{V_g \cdot n \cdot \eta_v}{1000}$$
 [L/min]

Drive torque T =
$$\frac{1.59 \cdot V \cdot \bigtriangleup p}{1000 \cdot \eta_{mh}}$$
[N,m]

Drive power P =
$$\frac{2\pi \cdot T \cdot n}{60000}$$
 = $\frac{T \cdot n}{9549}$ = $\frac{q_v \cdot \triangle p}{600 \cdot \eta_t}$ [kV

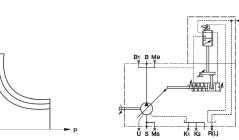

* Operation Mode

1. Outlined

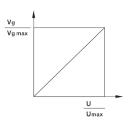
DR/DRG

Pressure control DR Remote pressure control DRG

Maximum pressure adjustment in hydraulic system; Set range 20...350 bar; Option: remote control DRG



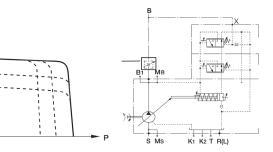
PA4VSO


LR Power control LR

The hyperbolic power control is kept constant at the same input speed Option: pressure control LR2D, remote control LR2G; Flow control LR2S, LR2F; Hydraulic stroke limiter LR2H; Mechanical stroke limiter LR2M; Hydraulic two point control LR2Z; Electrical discharge valve for help starting LR2Y.

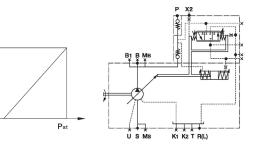
EO Hydraulic displacement control EO

Through the angel of the electronic feedback of the proportional valve to achieve stepless displacement adjustment. Electronic control Available options: EO1K, EO2K No valve EO1E, EO2E


Manual control MA Stepless adjustment of flow through the hand wheel Smax Smax

DFR

Pressure and flow control DFR


This control can be kept constant in the constant flow rate of the pump under the condition of constant change. Mechanical adjustable pressure control is preferred.

Available options: the throttle hole in the x of the oil port DFR1

Hydraulic control HD

Pump flow(displacement) of the stepless regulation and the pilot pressure. Adjust the proportion of the applied lead pressure. Option: pilot pressure characteristic curve, HD1, HD3, HD2; pressure control HD.B, remote control HD.GB; Power control DH1P; Electrical lead pressure control HD1T;

- 2. The code of control section and technical parameter
- Hydraulic control HD

Outline

HD Hydraulic control of displacement dependent on pilot pressure signal. The displacement is proportional to the pilot pressure. The mechanical pivot angle limit setting range is 50%--100%Vgmax.

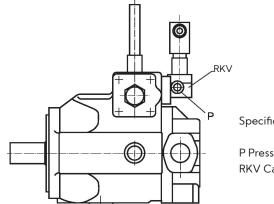
The ordering code number as following form

• Hydraulic displacement control HD

Outline

In the EO electric control work, the pump flow could set by proportion direction valve. Mean while, pump's current flow through inductance type position transducer feedback signal. This pump could reset the cylinder's zero position by the spring controls in the situation of normal pressure.

Do not reset at high-pressured work. Simultaneously, in order to reduce controls cylinder's loss flow, all size of hydraulic pressure fluid cylinder cavity is sealed.


The ordering code number as following form

						40	71	125	180	250	355	500		
Hydraulic control with	EO	1				Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO1	
	EO	1		E		Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO1E	
	EO	1			K	Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO1K	
proportion valve	EO	:	2			Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO2	
valve	EO		2	E		Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO2E	
	EO		2	-	K	Δ	Δ	Δ	Δ	Δ	Δ	Δ	EO2K	
Max.setting pre	ssure 10	Мра			Bypass valve									
	2F	N.4				۱۸	1							

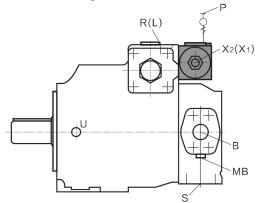
Max.setting pressure 35Mpa

____ Withour valve

Outline drawing

Specification of oil ports:

P Pressure port: M22 x 1.5 deep 16 RKV Case drain port : M22 x 1.5 deep 16

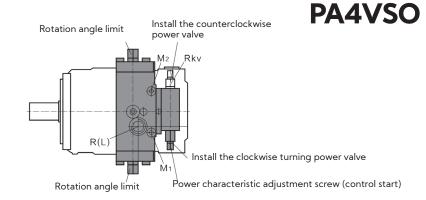


									-		
Pilot pressure characteristic	40	71	125	180	250	355	500		HD		- Г
1-4.5 Mpa	Δ	Δ	Δ	Δ	Δ	Δ	Δ	1	• 	J	
1-2.8 Mpa	Δ	Δ	Δ	Δ	Δ	Δ	Δ	2	•		
0.55-1.9 Mpa	Δ	Δ	Δ	Δ	Δ	Δ	Δ	3	•		
Closed loop pressure control									-		
Control at A port	Δ	Δ	Δ	Δ	Δ	Δ	Δ	А			ļ
Control at B port	Δ	Δ	Δ	Δ	Δ	Δ	Δ	В	_		
					<u></u>				-		

Without pressure control/need not fill the code

Note: $\sqrt{\text{available}; \Delta \text{ in preparation}}$

Outline drawing



Technical parameter

Size		40	71	125	180	250	355	500
Control moving distance	mm	14.2	17.3	20.7	20.7	25.9	25.9	32.6
Control area	cm ²	3.9	6.4	9	9	14.4	14.4	18.8
Control volume	cm ³	5.5	11	18.7	18.7	37.3	37.3	61.4
Min.control pressure	Мра	3	3	5	5	5	5	5
Control time 20Mpa pressure	S	0.1	0.1	0.1	0.1	0.2	0.2	0.8

Technical parameter

Size		40	71	125	180	250	355	500
Control cylinder's moving distance	mm	14.2	17.3	20.7	20.7	25.9	25.9	32.8
Control cylinder area	cm²	8.1	12.6	18.1	16.1	28.3	28.3	38.2
Control volume	cm ³	11.4	21.5	37.5	37.5	37.3	73.2	124.5
Min.control pressure	Мра	10	10	10	12.5	12.5	12.5	15
Max.control pressure	Мра	31.5	31.5	31.5	31.5	31.5	31.5	31.5
Control time	s	0.1	0.12	0.2	0.2	0.25	0.25	0.3

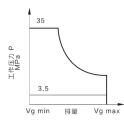
The ordering code number as following form

Used for hydraulic drives in open loop circuits

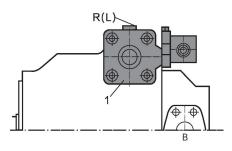
with the hyperbolic curve characteristic power adjuster, basic setting value Vgmax

Power regulation	40	71	125	180	250	355	500		LR	
The machinery adjust						Δ	Δ	2		
Remote hydraulic control	Δ	Δ	Δ	Δ	Δ	Δ	Δ	3	-	
Pressure control									-	
With pressure control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Δ	Δ	D	-	
With pressure control, remote hydraulic control	\checkmark	\checkmark	\checkmark	\sim	\sim	Δ	Δ	G	-	
Witho	out pre	ssure c	ontrol/ı	need no	ot fill th	ie code			-	
		Flow	/ contro	ol, limit					-	
With mechanical traveling sched- ule limit	Δ	Δ	Δ	Δ	Δ	Δ	Δ	М	- 	
Witho	ut flow	contro	ol. limit.	need r	ot fill t	he code	9		-	

Without flow control, limit, need not fill the code


Note: $\sqrt{\text{available}; \Delta \text{ in preparation}}$

Power control LR


Outline

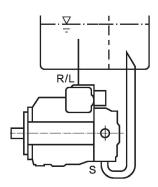
At the very beginning, the control scope could use the mechanical way to set, the setting value scope could use the spring and screw to adjust. When the pressure decreases, we could adjust spring and enter its starting position, the setting range of preset value: 3.5 Mpa--35 Mpa. The smallest and the biggest angle of rotation's limit can use the mechnical way, adjustment to Vgmax 50%.

Characteristic curv

Outline drawing

Used for hydraulic drives in open, semi-close and close loop circuits

with the hyperbolic curve characteristic power adjuster, basic setting value Vgmax depend on control pressure

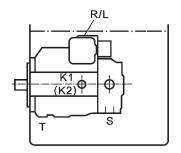

Power regu- lation	40	71	125	180	250	355	500		LR	N
The machin- ery adjust	Δ	Δ	Δ	Δ	Δ	Δ	Δ	2 -		
Remote hy- draulic control	Δ	Δ	Δ	Δ	Δ	Δ	Δ	3	_	
		Pr	essure	control					-	
With pressure control	Δ	Δ	Δ	Δ	Δ	Δ	Δ	D	_	
With pressure control, re- mote hydrau- lic control	Δ	Δ	Δ	Δ	Δ	Δ	Δ	G	-	

Without flow control, limit, need not fill the code

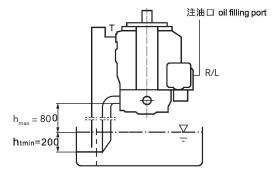
Note: $\sqrt{\text{available}; \Delta \text{ in preparation}}$

The hydraulic pump installed outside a tank If the pump installed below the tank, drain pipe and port S must be piped, as right diagram.

If the pump installed above the tank, drain pipe and port S must be piped, refer.


液面 fluid level

* Installation Postion


Horizontal installation

The hydraulic pump installed within a tank If the minimum fluid level is level above the top of pump, case drain ports and port S are open, as right diagram.

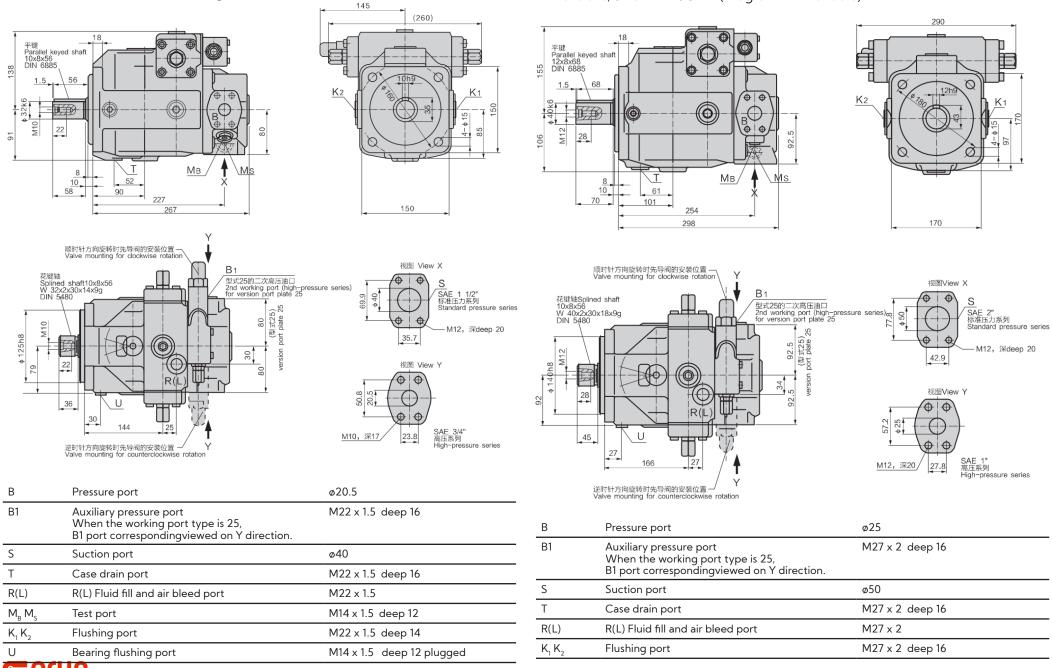
If the minimum fluid level falls the top of pump, case drain ports and port S must be piped, as following diagram.

If the minimum fluid level fall below the pump mounting flange, case drain ports T, S and port P/L must be piped, as right diagram.

PA4VSO

Vertical installation

The hydraulic pump installed within a tank If the minimum fluid level is level with of above the pump, mounting flange case drain ports T, S and port R/L are open, as right diagram.

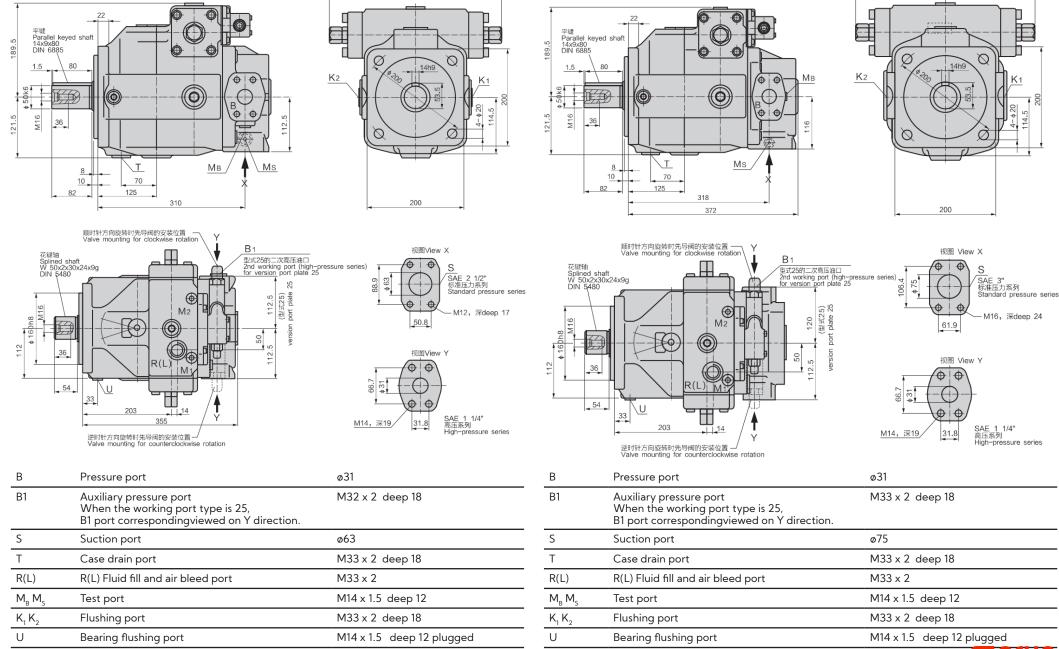

* Dimentions & Size

Dimensions, Size PA4VSO-40 (Diagram: DR Variable)

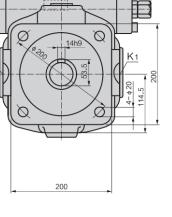
* Dimentions & Size

Dimensions, Size PA4VSO-71 (Diagram: DR Variable)

PA4VSO



Dimentions & Size *


Dimensions, Size PA4VSO-125 (Diagram: DR Variable)

Dimensions, Size PA4VSO-180 (Diagram: DR Variable)

355

355

PA4VSO

Dimentions & Size *

T

90

380

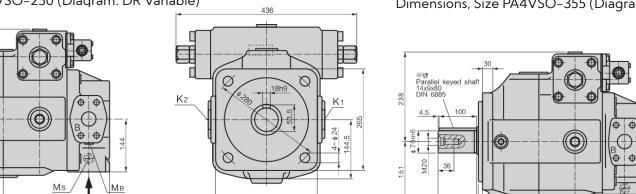
150

Parallel keyed shaft 18x11x100 DIN 6885

36

100

10


105

238

51

M20

Dimensions, Size PA4VSO-250 (Diagram: DR Variable)

265

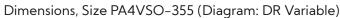
M42 x 2 deep 18

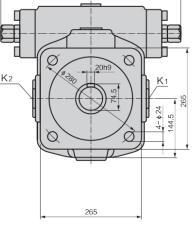
M14 x 1.5 deep 12 plugged

S

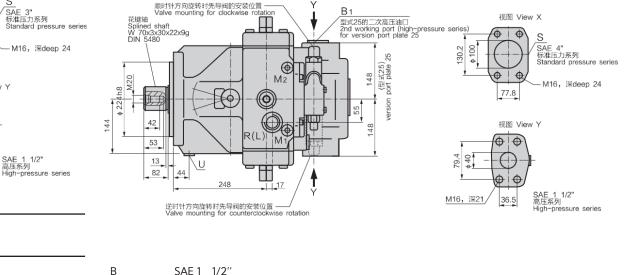
* Dimentions & Size

L

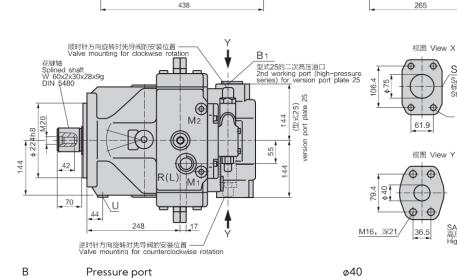

90


393

468


150

10 105


436

Ms

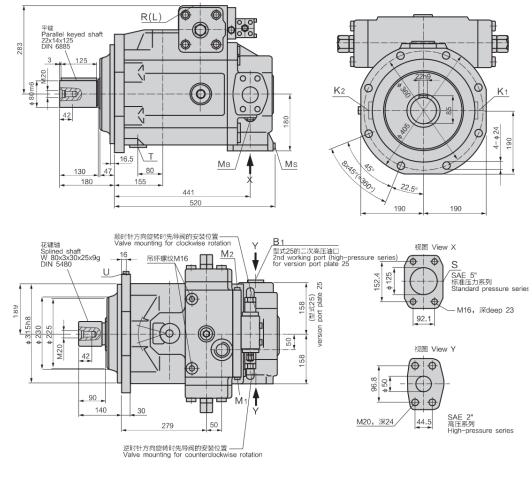
MB

В	SAE 1 1/2'' M42 x 2		
B1	4'' M42 x 2 M14 x 1.5 M24 x 2	M18 × 1.5 M18 × 1.5	
S	Suction port	ø100	

	1	
B1	Auxiliary pressure port When the working port type is 25, B1 port correspondingviewed on Y direction.	M33 x 2 deep 18
S	Suction port	ø75
Т	Case drain port	M42 x 2 deep 18
R(L)	R(L) Fluid fill and air bleed port	M42 x 2
M _B M _S	Test port	M14 x 1.5 deep 12

AULIC

Flushing port


Bearing flushing port

 $K_1 K_2$

U

* Dimentions & Size

Dimensions, Size PA4VSO-500 (Diagram: DR Variable)

B1 Auxiliary pressure port When the working port type is 25, B1 port correspondingviewed on Y direction. M48 x 2 deep 22 S Suction port SAE5n"	
T Case drain port M48 x 2 deep 22	
R(L) R(L) Fluid fill and air bleed port M48 x 2	
M _B M _S Test port M18 x 2 deep 12	
K ₁ K ₂ Flushing port M48 x 2 deep 12	
U Bearing flushing port M18 x 1.5 deep 12	

PA4VSO

